数据分析的正确步骤有哪些

来源:中琛源 浏览次数: 更新时间:2021-01-11 09:38:25

  数据分析遵循一定的流程,不仅可以保证数据分析每一个阶段的工作内容有章可循,而且还可以让分析最终的结果更加准确,更加有说服力。我们将数据分析过程组织为五个步骤:提问、整理、探索、得出结论和传达结果。以下是关键要点的概述,但你可以选择跳过。我们将在后面的部分中演练每一步,所以你将很快熟悉整个过程。


  提问


  你要获取一批数据,然后根据它提问,先提问,然后根据问题收集数据。在这两种情况下,好的问题可以帮助你将精力集中在数据的相关部分,并帮助你得出有洞察力的分析。


  整理数据


  你通过三步来获得所需的数据:收集,评估,清理。你收集所需的数据来回答你的问题,评估你的数据来识别数据质量或结构中的任何问题,并通过修改、替换或删除数据来清理数据,以确保你的数据集具有最高质量和尽可能结构化。


  探索性数据分析


  你可以探索并扩充数据,以最大限度地发挥你的数据分析、可视化和模型构建的潜力。探索数据涉及在数据中查找模式,可视化数据中的关系,并对你正在使用的数据建立直觉。经过探索后,你可以删除异常值,并从数据中创建更好的特征,这称为特征工程。


  得出结论做出预测


  这一步通常使用机器学习或推理性统计来完成,不在本课程范围内,本课的重点是使用描述性统计得出结论。


  传达结果


  你通常需要证明你发现的见解及传达意义。或者,如果你的最终目标是构建系统,则通常需要分享构建的结果,解释你得出设计结论的方式,并报告该系统的性能。传达结果的方法有多种:报告、幻灯片、博客帖子、电子邮件、演示文稿,甚至对话。数据可视化总会给你呈现很大的价值。


  使用正确的数据分析工具


  当然还有另一个最重要的点,那就是使用正确的数据分析工具。一个得心应手的数据分析工具,是每一位从业人员做数据分析的利器。面对浩如烟海的数据,如何选择合适的数据分析工具,成为运营、产品、市场等职能部门人员的一个难题,运用用数据分析工具,企业可以整合多种渠道的数据,快速完成和完善数据分析。


  中琛魔方大数据平台表示数据分析的目的性很强,数据收集、数据处理和数据建模都要围绕数据分析的目的展开;同时数据分析有对专业知识和技巧要求比较高,如概率统计、数学建模的等。

上一篇:企业如何应用大数据技术
来源:中琛源
更新时间:2021-01-11 09:18:59
下一篇:大数据分析应用领域有哪些
来源:中琛源
更新时间:2021-01-12 09:21:15