大数据分析的几个特点

来源:中琛源 浏览次数: 更新时间:2022-06-16 09:30:13

  在当今的大数据时代,以大数据为基础的人工智能时代的到来,为各行业开展基于数据资产的业务创新和管理创新带来了机遇。不仅IT行业的人们需要了解与大数据相关的知识,而且传统行业的从业者和普通大学生也应了解某些大数据知识。新的基础架构计划未来,大数据技术将开始得到全面应用,大数据还将重塑整个产业结构。想了解大数据,必须先从它的这五个特点开始。


  1.海量的数据量


  容量仅仅是界定大数据定义的关键要素之一,而对于大数据的定义至少有三个方面的重要要素。容量服务器数据恢复、许多不同的数据和文件类型、对于管理和更深入的分析数据。数据量本身就是聚合的概念。不是数据量大的数据被称为大数据,传统信息系统生成的“小数据”也是大数据分析的重要组成部分,这点必须清楚。当前,从大数据的数据源的角度来看,它主要集中在互联网,物联网和传统信息系统三个渠道。当前物联网数据的比例相对较大。


  2.数据分析类型繁多


  这种类型的多样性也让数据被分为结构化数据和非结构化数据。相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。


  3.数据价值密度


  虽然数据量大,数据价值密度低是大数据的第2个重要特征。传统数据基本都是结构化数据,每个字段都是有用的,价值密度非常高。大数据时代,越来越多数据都是半结构化和非结构化数据,比如网站访问日志,里面大量内容都是没价值的,真正有价值的比较少,虽然数据量比以前大了N倍,但价值密度确实低了很多。


  如果有海量的结构化数据,需要大数据技术才能处理得了,当然也可以称之为大数据,但价值密度并不低。举个例子,银联、VISA等清算组织有海量的交易数据,不仅数据量大,而且很有价值。


  4.数据处理速度快


  通常传统信息系统的数据增量是可以预测的,或者增长率是可控的,但是在大数据时代,数据增长率已经大大超过了传统数据,处理能力已经超过自身的极限。数据增长是一个相对的概念。与消费互联网相比,工业互联网带来的数据增长可能更加客观,因此工业互联网时代将进一步打开大数据的价值空间。


  5.数据的可靠性


  它指在数据的生命周期内,所有数据都是完全的、一致的和准确的程度。保证数据的完整性意味着以准确的、真实的、完全地代表着实际发生的方式收集、记录、报告和保存数据和信息。大数据时代带来的一个重要副作用是,很难区分真假数据,这也是当前大数据技术必须重点解决的问题之一。从当前大型Internet平台采用的方法来看,它通常是技术和管理的结合。


  中琛魔方大数据平台表示大数据已经成为过去几年中大部分行业的游戏规则,行业领袖,学者和其他知名的利益相关者都同意这一点,随着大数据继续渗透到我们的日常生活中,围绕大数据的炒作正在转向实际使用中的真正价值。当然大数据的出现,也让商业智能BI逐渐火了起来。

上一篇:大数据分析软件能解决哪些问题
来源:中琛源
更新时间:2022-06-16 09:16:48
下一篇:农业大数据类型有哪些
来源:中琛源
更新时间:2022-06-16 09:45:52