大数据挖掘应注意哪些问题

来源:中琛源 浏览次数: 更新时间:2022-06-21 09:22:53

  数据挖掘的计算复杂度和灵活度远远超过前两类需求。一是由于数据挖掘问题开放性,导致数据挖掘会涉及大量衍生变量计算,衍生变量多变导致数据预处理计算复杂性;二是很多数据挖掘算法本身就比较复杂,计算量就很大,特别是大量机器学习算法,都是迭代计算,需要通过多次迭代来求最优解。


  从挖掘任务和挖掘方法的角度,着重突破:


  1)可视化分析。数据可视化无论对于普通用户或是数据分析专家,都是最基本的功能。数据图像化可以让数据自己说话,让用户直观的感受到结果。


  2)数据挖掘算法。图像化是将机器语言翻译给人看,而数据挖掘就是机器的母语。分割、集群、孤立点分析还有各种各样五花八门的算法让我们精炼数据,挖掘价值。这些算法一定要能够应付大数据的量,同时还具有很高的处理速度。


  3)预测性分析。预测性分析可以让分析师根据图像化分析和数据挖掘的结果做出一些前瞻性判断。


  4)语义引擎。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。语言处理技术包括机器翻译、情感分析、舆情分析、智能输入、问答系统等。


  5)数据质量和数据管理。数据质量与管理是管理的最佳实践,透过标准化流程和机器对数据进行处理可以确保获得一个预设质量的分析结果。


  中琛魔方大数据平台表示大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。

上一篇:大数据处理的四大关键技术
来源:中琛源
更新时间:2022-06-21 09:19:32
下一篇:大数据分析平台有什么功能特点
来源:中琛源
更新时间:2022-06-22 09:12:48